Patent NMT integrated with Large Vocabulary Phrase Translation by SMT at WAT 2017
نویسندگان
چکیده
Neural machine translation (NMT) cannot handle a larger vocabulary because the training complexity and decoding complexity proportionally increase with the number of target words. This problem becomes even more serious when translating patent documents, which contain many technical terms that are observed infrequently. Long et al. (2017) proposed to select phrases that contain out-of-vocabulary words using the statistical approach of branching entropy. The selected phrases are then replaced with tokens during training and posttranslated by the phrase translation table of SMT. In this paper, we apply the method proposed by Long et al. (2017) to the WAT 2017 Japanese-Chinese and Japanese-English patent datasets. Evaluation on Japanese-to-Chinese, Chinese-to-Japanese, Japanese-to-English and English-to-Japanese patent sentence translation proved the effectiveness of phrases selected with branching entropy, where the NMT model of Long et al. (2017) achieves a substantial improvement over a baseline NMT model without the technique proposed by Long et al. (2017).
منابع مشابه
Comparison of SMT and NMT trained with large Patent Corpora: Japio at WAT2017
Japan Patent Information Organization (Japio) participates in patent subtasks (JPC-EJ/JE/CJ/KJ) with phrase-based statistical machine translation (SMT) and neural machine translation (NMT) systems which are trained with its own patent corpora in addition to the subtask corpora provided by organizers of WAT2017. In EJ and CJ subtasks, SMT and NMT systems whose sizes of training corpora are about...
متن کاملNeural Machine Translation Model with a Large Vocabulary Selected by Branching Entropy
Neural machine translation (NMT), a new approach to machine translation, has achieved promising results comparable to those of traditional approaches such as statistical machine translation (SMT). Despite its recent success, NMT cannot handle a larger vocabulary because the training complexity and decoding complexity proportionally increase with the number of target words. This problem becomes ...
متن کاملTranslation of Patent Sentences with a Large Vocabulary of Technical Terms Using Neural Machine Translation
Neural machine translation (NMT), a new approach to machine translation, has achieved promising results comparable to those of traditional approaches such as statistical machine translation (SMT). Despite its recent success, NMT cannot handle a larger vocabulary because training complexity and decoding complexity proportionally increase with the number of target words. This problem becomes even...
متن کاملTranslating Phrases in Neural Machine Translation
Phrases play an important role in natural language understanding and machine translation (Sag et al., 2002; Villavicencio et al., 2005). However, it is difficult to integrate them into current neural machine translation (NMT) which reads and generates sentences word by word. In this work, we propose a method to translate phrases in NMT by integrating a phrase memory storing target phrases from ...
متن کاملImproving Neural Machine Translation through Phrase-based Forced Decoding
Compared to traditional statistical machine translation (SMT), neural machine translation (NMT) often sacrifices adequacy for the sake of fluency. We propose a method to combine the advantages of traditional SMT and NMT by exploiting an existing phrase-based SMT model to compute the phrase-based decoding cost for an NMT output and then using this cost to rerank the n-best NMT outputs. The main ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017